

Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering

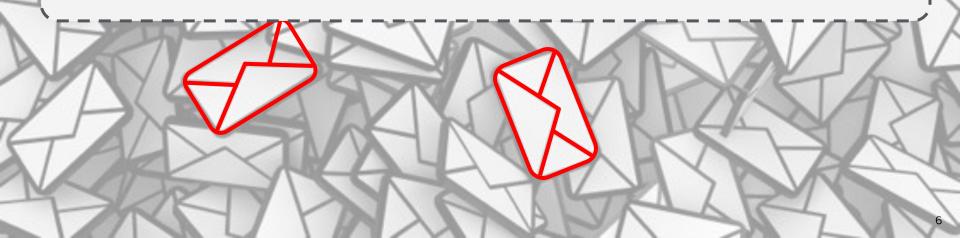
Jiaming Shen^{1*}, Maryam Karimzadehgan², **Michael Bendersky**², Zhen Qin², Donald Metzler² ¹University of Illinois at Urbana-Champaign ²Google Inc. Presented by Michael Bendersky @ CIKM 2018

* Work done while interning at Google

How many people have searched the mailbox?

How many people will routinely clean the mailbox?

Email search comes to the rescue



Introduction

- Email search is widely used in people's daily life
- Email search queries have different types and come in very different flavors:
 - E.g., {"recent water bill", "citi bank statement"} v.s. {"neural model papers", "UMAI proposal"}

Simple reverse chronological ordering will be good enough

Relevance and content-based ranking is needed

• A single model fails to capture diverse ranking criterions

Goal: Exploit query-specific ranking models based on query type

Two Key Research Questions & Previous Studies

- **Research Question 1**: How to obtain query type information?
 - Previous approach 1: Train a query classifier using a labeled dataset
 - Previous approach 2: Cluster query using click data across different users
 - Limitation: both are inapplicable for email search due to the private nature of email
- **Research Question 2**: How to use query type information for ranking?
 - Previous approach: Train multiple type-specific ranking models (plus an optional global ranking model) and combine them together
 - Limitation: it's burdensome to turn multiple ranking models in practice, and partitioning data causes each type-specific ranking model more likely to overfit

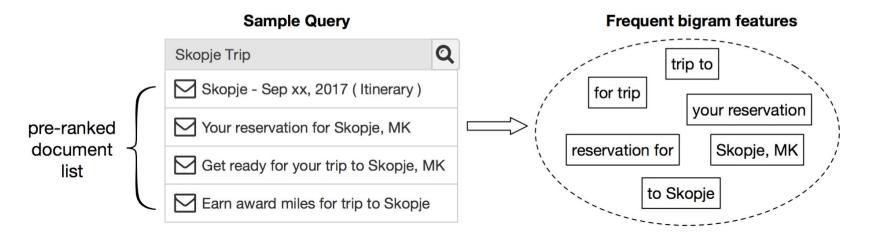
Two Key Research Questions & Previous Studies

- **Research Question 1**: How to obtain query type information?
 - Previous approach 1: Train a query classifier using a labeled dataset
 - Previous approach 2: Cluster query using click data across different users
 - Limitation: both are inapplicable for email search due to the private nature of email
 - Our solution: Hierarchical query clustering with document-enhanced query representation
- **Research Question 2**: How to use query type information for ranking?
 - Previous approach: Train multiple type-specific ranking models (plus an optional global ranking model) and combine them together
 - Limitation: it's burdensome to turn multiple ranking models in practice, and partitioning data causes each type-specific ranking model more likely to overfit
 - Our solution: Joint ranking and query cluster prediction within a multi-task learning framework

Our Method

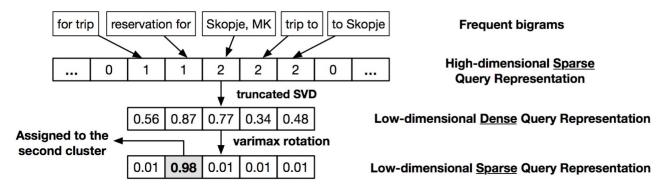
Hierarchical Query Clustering -- Query Representation

- Key challenge: limited query features due to privacy
- Our method:
 - First, leverage a reasonable base ranker (e.g., BM25) to obtain a pre-ranked list
 - Second, extract features from top documents in the pre-ranked list
 - Finally, combine document-level features with query original features

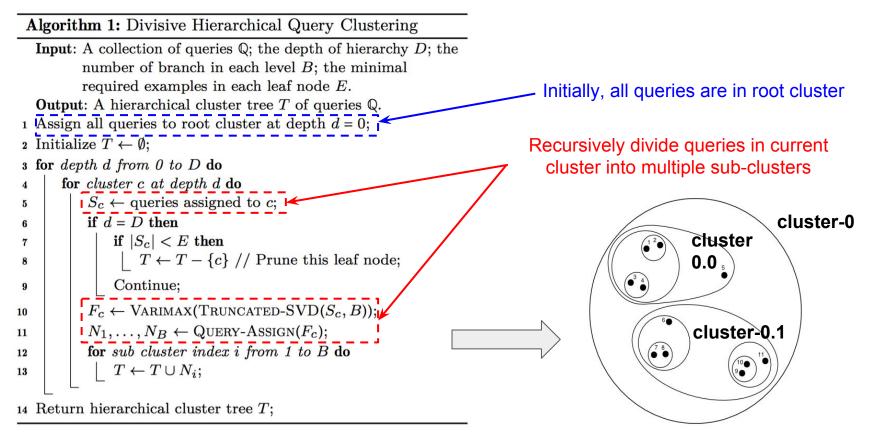


Hierarchical Query Clustering -- Query Clustering

- Key challenge: work on high-dimensional features and need to scale
- Our method:
 - Step 1: use **truncated SVD model** (a.k.a LSI) to convert *sparse, high-dimensional* feature vectors into *dense, low-dimensional* feature vectors
 - Step 2: use **varimax rotation** to project *dense, low-dimensional* feature vectors into a few of axes and obtain *sparse, low-dimensional* feature vectors
 - Finally, recursively apply step 1&2 in a top-down fashion



Hierarchical Query Clustering -- Query Clustering



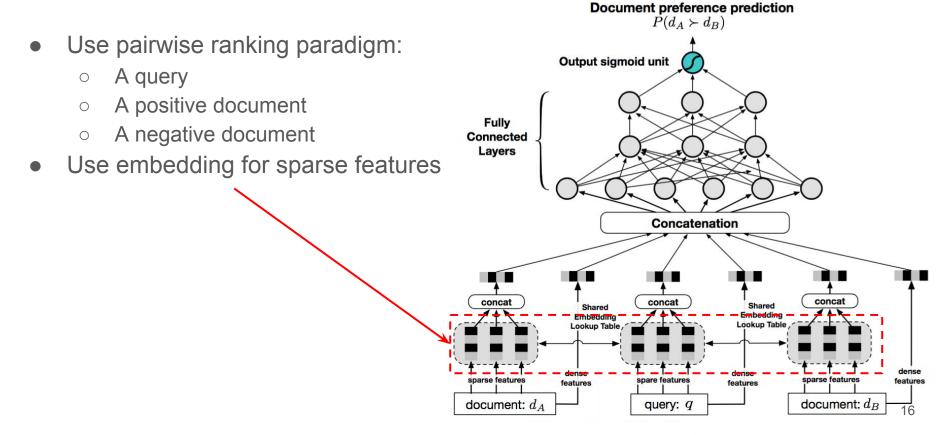
Hierarchical Query Clustering -- Summary

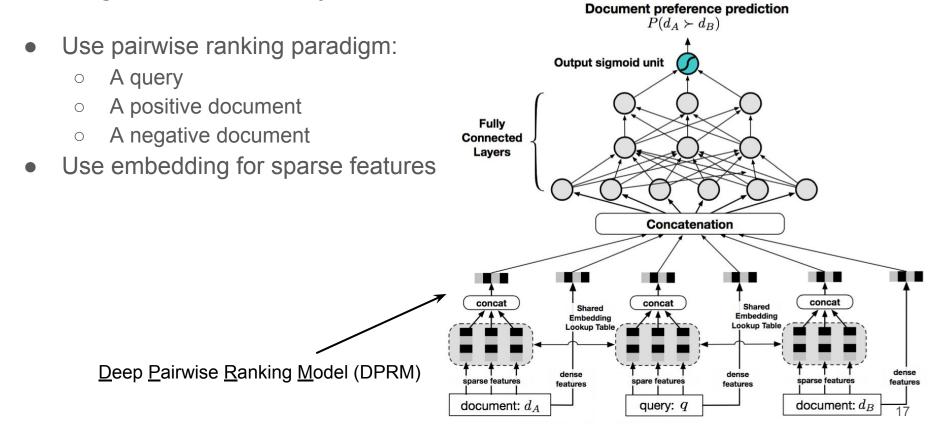
- We map each query into multiple clusters of different granularities
 - E.g. query-1 -> ["cluster-0", "cluster-1", "cluster-1.3", "cluster-1.3.4"]

Root cluster 1st level cluster 2nd level cluster 3rd level cluster

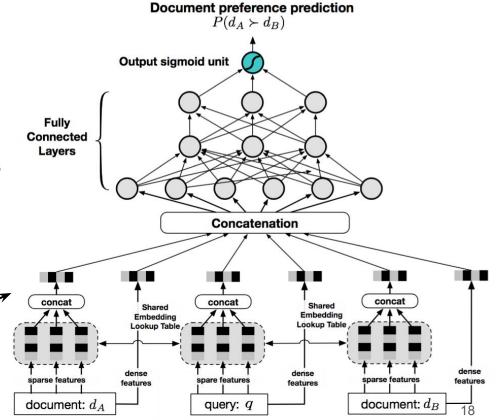
- Advantage of our method:
 - Able to leverage sparsity in original high-dimensional feature vectors
 - Scale to billions of examples
 - Provide clusters of different granularities and allow subsequent models to pick the adequate level of granularity for each cluster

 $P(d_A \succ d_B)$ Use pairwise ranking paradigm: **Output sigmoid unit** A query Ο A positive document Ο Fully A negative document Ο Connected Layers Concatenation concat concat concat Shared Shared Embedding Embedding Lookup Table Lookup Table dense dense dense sparse features sparse features spare features features features feature document: d_A query: q document: d



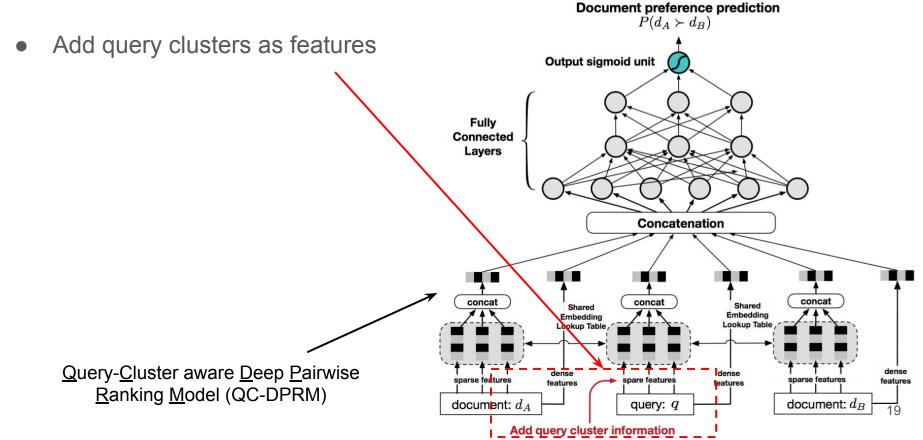


- Use pairwise ranking paradigm:
 - A query
 - A positive document
 - A negative document
- Use embedding for sparse features
- Our goals:
 - Incorporate query type information
 - Achieve query-dependent ranking



<u>Deep Pairwise Ranking Model (DPRM)</u>

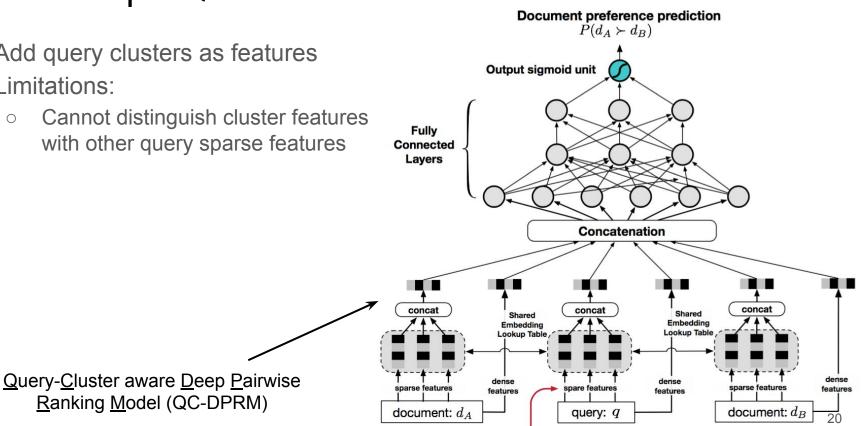
First Attempt: QC-DPRM



First Attempt: QC-DPRM

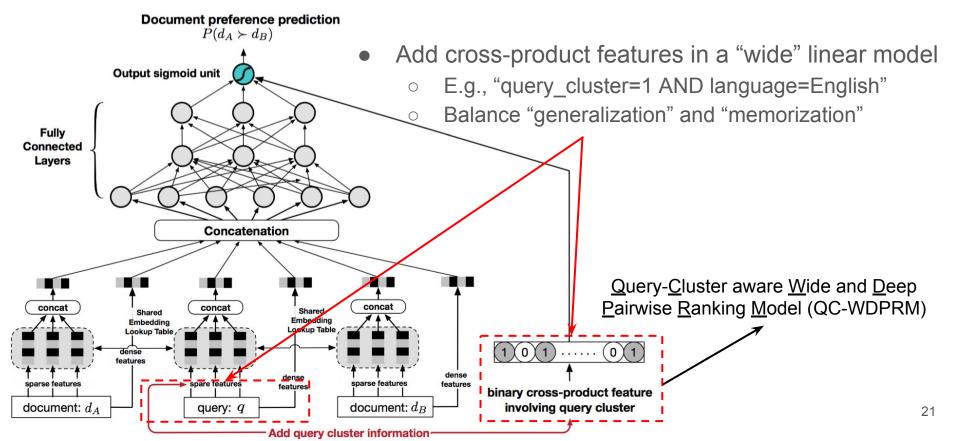
Ranking Model (QC-DPRM)

- Add query clusters as features
- Limitations:
 - Cannot distinguish cluster features Ο with other query sparse features

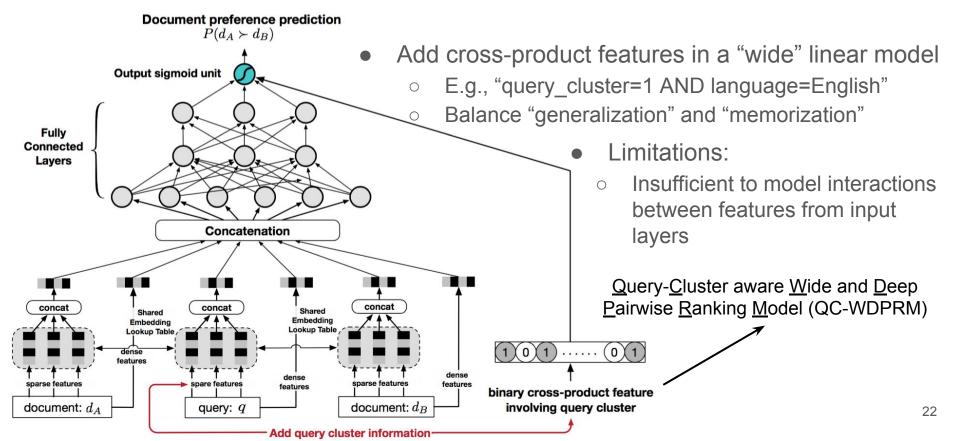


Add query cluster information

Second Attempt: QC-WDPRM



Second Attempt: QC-WDPRM



Query-dependent Ranking by Multi-Task Learning

- Motivations:
 - Back to the initial thinking, we aim to share the training of multiple ranking models, one for each query type
 - Push the query cluster feature in a top-down fashion to influence of all query/document representation learning
- Core idea: use multi-task learning to combine two tasks
 - Main Task: Email Search Ranking
 - Auxiliary Task: Query Cluster Prediction
- We present our <u>Query-Cluster aware Multi-Task Learning Ranking Model</u> (QC-MTLRM)

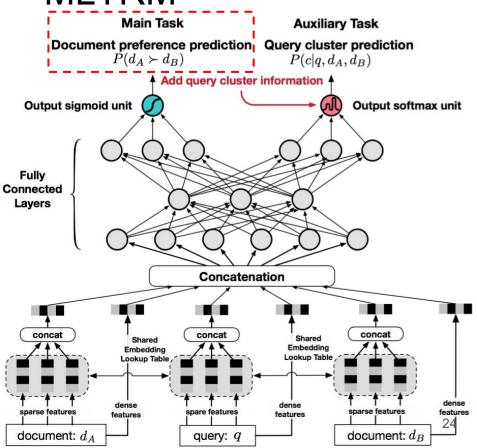
Query-dependent Ranking -- MLTRM

• Main Task -- ranking loss:

Equals to 1 if *document a* is preferred to *document b* and equals to 0 if otherwise

$$l^{rank}(q) = -y_{ab}\log(p_{ab}) - (1 - y_{ab})\log(1 - p_{ab}),$$

$$p_{ab} = P(d_A \succ d_B),$$



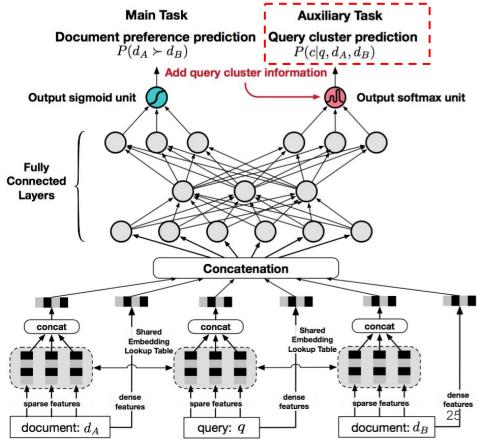
Query-dependent Ranking -- MLTRM

• Main Task -- ranking loss:

Equals to 1 if *document a* is preferred to *document b* and equals to 0 if otherwise

$$\begin{aligned} p_{ab} &= -y_{ab} \log(p_{ab}) - (1 - y_{ab}) \log(1 - p_{ab}), \\ p_{ab} &= P(d_A \succ d_B), \end{aligned}$$

 $l^{cluster}(q) = -\sum_{c \in C} p_c \log \hat{p_c}, \text{Ground truth}$ $\hat{p_c} = p(c|q, d_A, d_B), \text{Ground truth}$



Query-dependent Ranking -- MLTRM

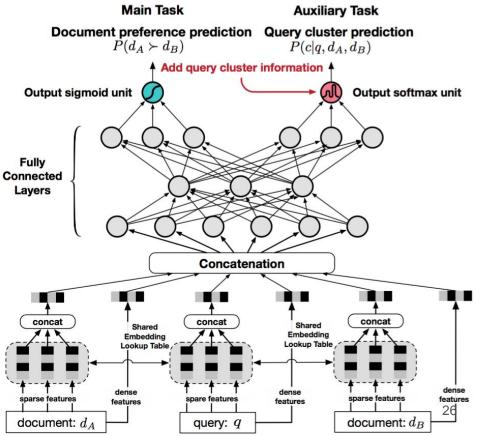
• Main Task -- ranking loss:

Equals to 1 if *document a* is preferred to *document b* and equals to 0 if otherwise

$$\begin{aligned} l^{rank}(q) &= -y_{ab}\log(p_{ab}) - (1 - y_{ab})\log(1 - p_{ab}), \\ p_{ab} &= P(d_A \succ d_B), \end{aligned}$$

 $l^{cluster}(q) = -\sum_{c \in C} p_c \log \hat{p_c},$ Ground truth $\hat{p_c} = p(c|q, d_A, d_B),$

• Combined loss: mix_rate $L(\Theta) = \frac{1}{|Q|} \sum_{q \in Q} \left(l^{rank}(q) + \sum_{q \in Q} l^{cluster}(q) \right)$



Experiments

Experimental Setup

- Evaluation dataset:
 - Anonymized Gmail queries with *k*-anonymity approach
 - 66 million training queries, 4 million validation queries, and 9 millions testing queries, splitted based on their issued time to avoid data leakage
- Query and document features:

Feature Type	Descriptions	Usage
Content	List of frequent n -grams appearing in the query text and the email subject	Cluster queries
	e.g., "Class schedule on Friday morning" \rightarrow ["class schedule", "Friday morning"].	Learn ranking models
Category	Small set of commonly used email labels	Cluster queries
	e.g., Promotions, Forums, Purchases, and etc. (see [2] for detailed label examples)	Learn ranking models
Structure	Frequent machine-generated email subject templates e.g., Your trip confirmation number $12345 \rightarrow$ Your trip confirmation number * (see [2] Table 2 for more details on structure features)	Cluster queries Learn ranking models
Situational	Temporal and Geographical features of current search request e.g., Friday, 8:00pm, USA, Japan (see [42] for more details)	Learn ranking models

Experimental Setup

- Evaluation metrics:
 - Mean Reciprocal Rank (MRR)
 - success@1: percentage of queries for which clicked email is ranked in top-1
 - success@5: percentage of queries for which clicked email is ranked within top-5
- Hyper-parameters:
 - Depth and number of branches in the hierarchical clustering algorithm
 - Number of hidden layer, hidden layer size, learning rate, drop-out, embedding size, optimization algorithm
 - Tuned on validation set

Q1: How do different query-dependent ranking models leverage the query cluster information?

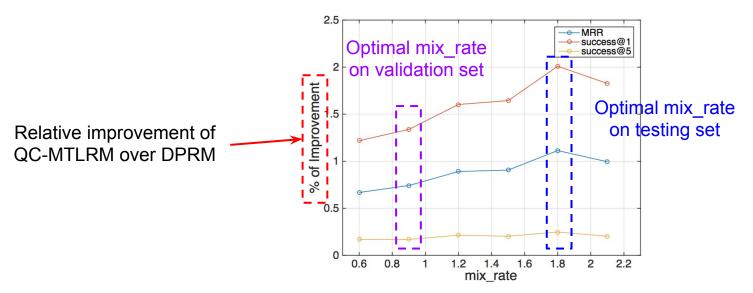
- Treating query cluster information as additional feature does not work well
- Incorporating query cluster information as "label" for auxiliary query cluster prediction task really helps

Method	MRR	success@1	success@5
DPRM	0.6698	0.4874	0.8861
QC-DPRM	0.6697~(-0.01%)	0.4873~(-0.02%)	0.8864~(+0.03%)
QC-WDPRM	0.6699~(+0.01%)	0.4875~(+0.02%)	0.8862~(+0.01%)
QC-MTLRM	$0.6748 \; (+0.70\%)^*$	$0.4939 \; (+1.32\%)^*$	$0.8875~(+0.17\%)^*$

* indicates the improvement is statistically significant in terms of two-tailed paired t-test with 99% confidence level

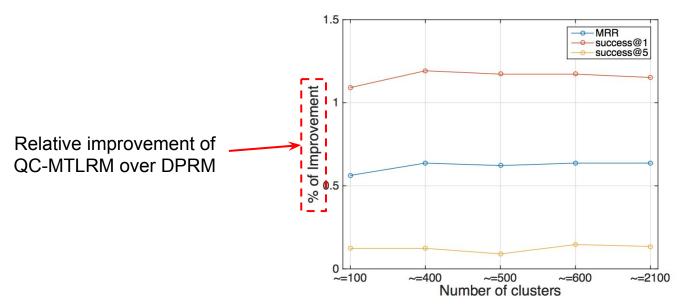
Q2: How do different mix_rates influence the performance of query-dependent ranking models?

- We use mix_rate to balance the ranking loss with cluster prediction loss
- Applying multi-task learning with a wide range of mix_rate can help improve the ranking performance



Q3: How do different cluster numbers influence the performance of query-dependent ranking models?

- We find QC-MTLRM is insensitive to the cluster number
 - We suspect the reason is that around 100 query clusters can capture most of the important data-dependent information



Q4: How do different query-dependent ranking models contribute to an end-to-end ranking pipeline

- Production-level search engines usually have an end-to-end ranking pipeline which integrates multiple ranking signals
- Weighted Average Click Position (WACP): smaller the better
- QC-MTLRM can effectively leverage query cluster information and output indicative signals useful to an end-to-end ranking pipeline

Method	WMRR	WACP
LTR + DPRM	$+2.35\%^{*}$	$-3.24\%^{*}$
LTR + QC-DPRM	$+2.32\%^*$	$-3.20\%^{*}$
LTR + QC-WDPRM	$+2.35\%^*$	$-3.28\%^{*}$
LTR + QC-MTLRM	$+2.52\%^{**}$	-3.41%**

* indicates the improvement is statistically significant over LTR and ** indicates the improvement is statistically significant over both LTR and

Conclusions & Future Work

- Goal:
 - Exploit query-specific ranking models for different (types of) queries
- Methods:
 - Use hierarchical query cluster to obtain query type information
 - Use multi-task learning to leverage query type information in ranking model

• Future Directions:

- Leverage hierarchical query clustering algorithm to obtain user clusters and then build user-specific ranking model
- Extend the multi-task learning idea to pointwise/listwise ranking paradigms

Thank you!

Questions?